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Abstract

A method for simulation of the dynamic interaction between vehicle and railway track is proposed. The model has been

designed to take into account the complexity of wheel–rail contact, railpad and ballast, with low computational

requirements. A modal description of the rails and the sleepers is presented, imposing the coupling between these elements

and the vehicle by means of the associated interaction forces. This provides a model with a reduced number of coordinates

and therefore a low computational cost is achieved. It is shown that this model also enables to incorporate the associated

nonlinear characteristics between the different elements by means of a simple formulation.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Railways are experiencing a significant set of problems associated with dynamic interaction of the
vehicle–track system. These problems mainly stem from existing wheel and track defects and they affect
acoustic emissions, track maintenance and the reliability of the vehicle’s rolling elements.

In order to study these problems, models have been developed which make it possible to simulate the
dynamic response of vehicle–track interaction. Only simple models, which consider the rail as a beam resting
on an elastic foundation, have an analytical solution. This simplicity is lost when the rail is considered as
having discrete supports and when nonlinearities are associated with the properties of ballast, railpads and
wheel–rail contact. Several authors have proposed methodologies for studying vehicle–track dynamics (see the
surveys in Refs. [1,2]). Perhaps, the most commonly studied problems concern the formation of irregular wear
(corrugation) on wheels and rails, and the dynamic response to wheelflat impact (part of the wheel tread is
worn off due to unintentional sliding as caused by locked brakes or by low wheel–rail friction). In these two
cases the frequency range considered is similar, so the basic dynamic model characteristics are the same for
both problems.

Of particular note among models with an analytical solution are the works of Grassie et al. [3], Patil [4] and
Duffy [5], where the track is considered as a beam on an elastic foundation. In Ref. [3], Grassie highlights the
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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need to improve the models by introducing the track on discrete supports. This improvement makes it possible
to increase the valid frequency range of the models by considering certain types of characteristic vibration
modes of the track, as for example the pinned–pinned resonance [1]. Some models [3] are based on calculating
a track frequency response function (FRF), although these models cannot consider local nonlinearities in for
example mechanical properties of ballast and railpad. Models which incorporate nonlinearities in track
properties and wheel–rail contact have been developed in Refs. [6–9]. The dynamic interaction is solved by
time integration of the equations of motion obtained from a finite element (FE) model incorporating forces as
nonlinear functions of displacement and velocity. As indicated in Ref. [8], the main disadvantage in using these
models is computational cost, because a very large number of coordinates needs to be considered.

By considering the dynamic model on the basis of a set of coordinates which defines the phase space
associated to the track in the studied frequency range, it is possible to reduce problem size and consequently
computational cost. Thus, in Ref. [10], Wu and Thompson proposed a set of coordinates for establishing the
phase space associated to the track FRF. This technique makes it possible to model wheel–rail interaction
realistically, providing the transient responses of track and vehicle at low computational cost. However, there
are certain limitations, since the track model is linear and only a small number of vibration modes can be
considered (corresponding to the number of FRF poles).

To define computationally efficient models, the applications of different dynamic substructuring techniques
have been proposed. For example, in Ref. [11], a modal description of the wheelset is proposed to model its
dynamic behaviour, coupling it to a FE rail model by the corresponding interaction forces.

In this paper, a new method for calculating the dynamic response of the vehicle–track system is developed
that can take into account complex models of wheel–rail contact, railpads and ballast at low computational
cost. The rails and the sleepers are described by their modal coordinates. Wheel–rail, rail–sleeper and
sleeper–ballast interactions are modelled using space coordinates and they are coupled to the modal models of
rail and sleeper by means of the corresponding interaction forces. The overall model is described by a reduced
number of coordinates. In addition, the most significant nonlinearities of the problem can be included easily.

2. Vehicle–track dynamic model

2.1. Track modelling

The developed track model is based on a substructuring approach, where a modal description of each
isolated rail and sleeper is adopted. Ballast and railpads are considered as connection elements, where the
ballast connects sleepers and ground and the railpads connect sleepers and rails.

The dynamic behaviour of the isolated substructures (rails and sleepers) is described by linear beam theory.
The sleepers are modelled as Euler beams on a Winkler foundation, where the ballast is the elastic foundation.
Therefore, initially, ballast is considered as having linear characteristics. However, it is possible to include
nonlinearities as proposed in Ref. [6] by incorporating them as external forces as a function of sleeper
displacements. Without losing the generality of the methodology developed here, only vertical train–track
dynamics is considered in the present study. This is justified because the present application is dominated by
such interaction.

The global coordinate system xyz is defined with the positive x-axis parallel to the rail in the direction of
vehicle motion. The y-axis is transverse to the track and the vertical z-axis is positive upwards. Fig. 1 illustrates
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Fig. 1. Model of sleeper.
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the sleeper model. Vertical displacements of sleeper s are given by the function usðy; tÞ, where y is the
coordinate of the studied section. Forces Fp

rs exerted by the rails through the railpads are applied on the rail
seats in y ¼ dr (index r ¼ 1, 2 corresponds to the right and left rail, respectively).

The mode shape cnðyÞ of the nth non-damped mode is mass-normalised, and on is the natural angular
frequency (mode numbers n ¼ �1 and 0 are reserved for modes which do not produce elastic strain in the
beam). Modal properties are calculated analytically according to Ref. [12]. Damping is considered through the
modal damping rate xn associated to each sleeper mode.

The transformations, which relate physical sleeper displacements to modal coordinates and forces
transmitted through the railpads to modal forces, are

usðy; tÞ ¼
XNms

n¼�1

cnðyÞq
S
snðtÞ; f S

snðtÞ ¼
X2
r¼1

F p
rscnðdrÞ, (1)

where qS
snðtÞ and f S

snðtÞ represent the modal coordinate and the modal force associated to mode n of sleeper s,
respectively. Modal truncation is performed considering a finite number Nms of sleeper modes.

In the model, the rails are treated as Timoshenko beams. Vertical rail displacement is defined by the variable
vrðx; tÞ, where x is the coordinate which defines the location of the beam section (see Fig. 2). Sleeper s is located
in rail section x ¼ bs. Consider a vehicle with Nax wheelsets. The position of each wheelset is x ¼ ca þ Vt,
where V is the vehicle speed, ca is the corresponding initial coordinate and subindex a is an integer which
numbers the wheelsets. Each rail r is acted upon by a set of forces Fp

rs exerted by the sleepers through the
railpads, and another set of forces F c

ra transmitted by the wheels through the wheel–rail contacts.
The rail model in this work is also based on a modal description. Let lm and fmðxÞ be the mth non-damped

natural angular frequency and the corresponding mass-normalised vibration mode shape of an isolated rail,
respectively (subindex m varies from �1 to the number of rail modes Nmr; reserving mode numbers m ¼ �1
and 0 for rigid body modes which do not produce elastic strain in the beam). Considering the rail as a
Timoshenko beam with free–free boundary conditions, the corresponding mode shapes and natural
frequencies can be determined analytically according to Ref. [13]. Rail damping is accounted for by the modal
damping rate zm. In this case, the modal transformations for the rail are

vrðx; tÞ ¼
XNmr

m¼�1

fmðxÞq
R
rmðtÞ; f R

rmðtÞ ¼
XNax

a¼1

Fc
rafmðca þ VtÞ �

XNs

s¼1

Fp
rsfmðbsÞ, (2)

where qR
rmðtÞ and f R

rmðtÞ represent the modal coordinate and the modal force associated to mode m of rail r,
respectively.

2.2. Equations of motion of the track

According to the above track model, the receptance HS
n corresponding to mode n of an isolated sleeper is

HS
n ðsÞ ¼

qS
sn

f S
sn

¼
1

s2 þ 2xnonsþ o2
n

, (3)

where s represents the Laplace variable. The model of mode n of sleeper s, as given by Eq. (3), can be
expressed in the time domain by the following set of equations:

_qS
snðtÞ ¼ �2xnonqS

snðtÞ þ pS
snðtÞ; _pS

snðtÞ ¼ �o
2
nqS

snðtÞ þ f S
snðtÞ, (4)
c
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Fig. 2. Model of rail.
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where coordinate pS
snðtÞ has been introduced along with coordinate qS

snðtÞ in order to obtain a base of the phase
space for the sleeper dynamics (s varies from 1 to the number of sleepers Ns, and n from �1 to the number of
sleeper modes Nms).

Proceeding for each rail in a similar way, the receptance HR
m is given by

HR
m ¼

qR
rm

f R
rm

¼
1

s2 þ 2zmlmsþ l2m
. (5)

This leads to the following set of equations of motion:

_qR
rmðtÞ ¼ �2zmlmqR

rmðtÞ þ pR
rmðtÞ; _pR

rmðtÞ ¼ �l
2
mqR

rmðtÞ þ f R
rmðtÞ, (6)

where coordinate pR
rmðtÞ has been introduced so that qR

rmðtÞ and pR
rmðtÞ form a base of the phase space for the rail

dynamics (r varies from 1 to the number of rails Nr, and m from �1 to the number of rail modes Nmr).

2.3. Vehicle model

The vehicle is modelled as a multibody system where the wheelsets, bogie frames and carbody are
considered as rigid bodies joined by means of linear suspensions (see Fig. 3). A set of reference point
coordinates, which include centre of mass displacements and rotations of the bodies, is adopted assuming the
hypothesis of small displacements. Let w(t) be the vector containing the vehicle coordinates. For the ath
wheelset, two independent displacements are studied corresponding to vertical displacement za(t) and roll
angle ya(t). On each wheelset a, forces Fc

ra (r ¼ 1; 2) from each rail are applied through the wheel–rail contacts.
The equations of motion for the system described above can be written as

M €wþD _wþ Kw ¼ Fext þ Fc, (7)

where M, D and K correspond to the mass, viscous damping and stiffness matrices of the vehicle, and Fext is
the vector of external forces (such as gravity loads). The vector Fc contains the forces transmitted through the
wheel–rail contacts.

2.4. Vertical forces in wheel– rail contact

Wheel–rail interaction is modelled by the contact force F c
ra. In general, this force is expressed as a function

of the relative displacement between wheel and rail at the contact point, and it depends on the un-deformed
wheel–rail geometry and the elastic characteristics of the wheel–rail contact.

Wheel and rail imperfections are accounted for by an irregularity function, which is defined as the vertical
wheel displacement assuming no loss of contact and un-deformable wheel and track. A characteristic type of
irregularity is associated with the wheelflat. Bearing in mind that a fresh flat is reshaped into a rounded flat
shortly after being formed, a cosine function to represent the irregularity function for a rounded flat is often
adopted [10,14]. The approach of the centres of the wheel and the rail as a function of angular rotation of the
wheel assuming rigid contact for the fresh and the rounded flats are shown in Fig. 4.
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Fig. 3. Model of vehicle.
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Fig. 4. Irregularity functions for a 92.7mm fresh flat (solid) and the corresponding 150mm rounded flat (dash–dotted). a ¼ 01 indicates

complete contact with the fresh flat.
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To account for the elasticity in the wheel–rail contact, several authors [7,10,14,15] adopt Hertzian models
where the force transmitted in the contact is given by the equation

Fc ¼ kHd1:5. (8)

Here d is the approach of the centres of the two elastic bodies in contact, and kH is a constant which depends
on contact geometry and the mechanical characteristics of the materials.

In the case of a fresh flat, the Hertzian model may not be appropriate because the un-deformed wheel
surface cannot be described as a paraboloid (according to Hertzian contact conditions in Ref. [16]). However,
for typical wheelflat and wheel dimensions, a non-conformal contact hypothesis can be adopted (as defined by
Hills and Nowell [17]). This makes it possible to use normal non-Hertzian contact calculation methods such as
those developed by Kalker [18].

For example, using Kalker’s model in Ref. [18], Fig. 5 shows the approach of the centres for the combined
effect of the geometry of the wheelflat and the elastic deformation of the wheel and rail under a static load of
100 kN. The approach is represented as a function of the angular position of the fresh flat relative to the rail.
The calculations were performed for a 92.7mm long wheelflat on a 1000mm diameter wheel. It is observed
that flexibility increases considerably when contact occurs at the fresh flat vertex. However, when there is full
wheelflat contact, flexibility decreases very rapidly.

When non-Hertzian contact is considered, a large set of calculations is required and it is not viable to solve
this problem simultaneously with the integration of the differential equations of motion. Instead, the non-
Hertzian model is precalculated for a set of relative wheelflat positions with respect to the track and for
different normal forces in the contact. This makes it possible to interpolate the contact force model in the
dynamic simulation. An example of contact model for a fresh flat is shown in Fig. 6, which shows the
approach of the wheel and rail centres as a function of both angular rotation of the wheel and static load.

A good fit is obtained for each angular position of the wheel by a function of the type

Fc ¼ kdg, (9)

where k and g depend on the wheelflat position with respect to the contact. The parameter g is approximately
1.5 (cf. Eq. (8)) except when there is full wheelflat–rail contact, where g is close to 1.

The distribution of normal stresses transmitted between wheel and rail calculated according to the model in
Ref. [18] makes it possible to determine the pressure centre and therefore the position of the resultant contact
force in relation to the contact patch. The deviation of the application point of the resultant concentrated
contact force with respect to the wheel centre position is shown in Fig. 7. This deviation is calculated using
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Fig. 6. Approach of centres of the two elastic bodies in contact in relation to the load and the angle of wheel rotation. a ¼ 01 indicates

complete contact between fresh flat and rail.
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Fig. 5. Approach of centres of the two elastic bodies in contact under a load of 100 kN in relation to angle of wheel rotation. a ¼ 01
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contact.
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both the elastic contact model and the rigid model with the same data as in the above example. As can be seen,
using the elastic contact model, the deviation in the application point of the transmitted force is smoother
around a ¼ 01, which can avoid numerical problems when integrating the differential equations.

2.5. Railpads

Nonlinear behaviour is mainly associated with the elements interconnecting the subsystems, as in the case of
wheel–rail contact dealt with above but also for railpads and ballast.

The stiffness and damping properties of the railpad determine the force Fp
rs transmitted between rails and

sleepers. The force is a function of the relative displacement w of the elements which are joined by the railpad,
and its time derivative _w according to

Fp
rs ¼ kpwþ cp _wþ hpðw; _wÞ, (10)
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Fig. 7. Longitudinal deviation of the point of application of contact force with respect to the centre position of the axle for a fresh flat

considering an elastic (solid) or a non-elastic (dash–dotted) contact model.
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where the nonlinearities associated to railpad behaviour are considered in hpðw; _wÞ. A similar procedure can be
adopted to model the characteristics of the ballast.
3. Solving the interaction problem

The time response of the system is obtained by integrating the set of differential equations (4), (6) and (7) by
using a numerical Runge–Kutta or Adams type algorithm. The equations are coupled by the terms
corresponding to the interaction forces, i.e. the forces transmitted through wheel–rail contacts, railpads and
ballast, which depend on relative displacements and velocities as described in the previous section.
Displacements in physical coordinates, required to calculate the forces transmitted through railpads and
contacts, and the values of the force terms which appear in the differential equations (4) and (6) are obtained
through the modal transformations (1) and (2).

As the boundary conditions of the rail model are free–free, the simulation starts in the third sleeper bay in
order to obtain a stationary response more quickly. The static displacements are taken as initial conditions in
the simulation.

Problem size depends on the number of rails and sleepers, the number of vibration modes considered in the
modal descriptions of these elements, and the number of coordinates considered in the vehicle model. It is
particularly important in this method to determine the appropriate number of vibration modes to be
considered in the modal description of the system, see the next section.
4. Modal truncation

4.1. Introduction

The proposed method requires a simplification by modal truncation of Eqs. (1) and (2). The truncation of
rail modes is the most significant for model accuracy, and it therefore defines the frequency range in which the
model is applicable. In order to determine the number of necessary modes, a criterion based on track FRF
accuracy is developed using a modal substructuring procedure which applies the same simplifying hypothesis
as the proposed method. Using the modal substructuring technique described in the next section, it is possible
to obtain the FRF and to verify exact function convergence for a range of frequencies by increasing the
number of modes.



ARTICLE IN PRESS
L. Baeza et al. / Journal of Sound and Vibration 293 (2006) 112–124 119
4.2. Track FRF

The method for obtaining the FRF is based on the assembly of the linearised equations of motion related to
the modal coordinates of each substructure (rails and sleepers). Fig. 8 shows the set of coordinates which are
considered, corresponding to rail and sleeper displacements at railpad contact points. Vectors vr and us define
the selected rail r and sleeper s displacements.

Considering the modal transformation defined in Eqs. (1) and (2), the relation between space and modal
coordinates considered in the problem can be written as

(11)

where the vector vr contains the displacements fvr1 . . . vrNs
gT of rail r and the vector us includes the

displacements of sleeper s. Vectors qR
r and qS

s are the displacements of rail r and sleeper s expressed in modal
coordinates.

Linearising railpad characteristics, transmitted forces between rails and sleepers (see Fig. 9) can be
calculated by

Fp ¼ �Kpx�Dp _x, (12)

where matrices Kp and Dp are obtained from a linear approximation of Eq. (10). The ballast properties can be
included by means of a similar procedure as described above for the railpads, or by calculating the natural
vr1 vr2 vr3 vr,Ns

u1r u2r u3r
uNs,r

Fig. 8. Displacements considered in the modal substructuring model.
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Fig. 9. Railpad forces in the linear model.
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frequencies of the sleepers from a Winkler beam model. For the assembled track model, according to
Eqs. (3)–(6), the equation of motion in matrix form corresponding to the set of modal coordinates is

€qþ d_qþ kq ¼ f, (13)

where d and k are diagonal matrices containing the modal damping and modal stiffness properties. The
elements of the diagonal in matrix d are 2xnon for the sleeper coordinates and 2zmlm for the rail coordinates.
The diagonal of matrix k contains the squares of the natural frequencies of the rails and sleepers. The vector f
expresses the forces transmitted through the railpads (and ballast) and the wheel–rail contact forces in modal
coordinates. The transformation which relates the physical and modal forces is

f ¼ TTðFp þ FcÞ, (14)

where Fc contains the wheel–rail contact forces. Substituting f and x values in Eq. (13) and reordering gives

€qþ ðdþ TTDpTÞ_qþ ðkþ TTKpTÞq ¼ TTFc, (15)

which provides the FRF matrix for modal coordinates q as

HqðoÞ ¼ ½�o2Iþ ioðdþ TTDpTÞ þ ðkþ TTKpTÞ�
�1. (16)

The FRF for physical coordinates x is finally calculated as

HxðoÞ ¼ THqðoÞTT. (17)

In order to obtain the FRF of a point away from the railpad contact, the displacement of this point must be
added in the vector x as a new coordinate.

4.3. Model fit by FRF

Fig. 10 shows a set of FRFs (receptance) calculated either by the proposed method or with a FE model.
Two results with the proposed model have been calculated using modal properties for the rail obtained from
either a Timoshenko or an Euler beam model. A third FRF has been calculated using a FE model where 16
Timoshenko beam elements per sleeper bay have been used in the rail model. The properties of these models
correspond to those of the discrete support model in Ref. [3]. A track model with 25 sleeper bays and with
free–free boundary conditions at both rail ends is considered. The FRF is studied in one point on the rail at
the mid-section of the track model. It is observed that the results obtained from the proposed model using the
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Fig. 10. FRF for a model with 25 sleeper bays. Comparison of results from FE model (dotted) and model based on the suggested

substructuring method: modal properties from Euler beam model (dash–dotted) and Timoshenko beam model (solid).
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Timoshenko beam model agrees well with the FRF obtained from the FE model. The proposed model with
rail modal properties obtained from an Euler beam model gives similar results to those calculated by Grassie
et al. [3]. However, an accurate FRF can only be obtained from the proposed model if a sufficient number of
modes in the rail is considered.

The influence of the number of rail modes on the FRF obtained by the proposed model is shown in Fig. 11.
The FRF is calculated considering 4 or 10 rail vibration modes, and it is compared with the FRF obtained
from a FE model. The track properties are the same as in the previous example. In order to evaluate the
influence of all the modes, damping is not considered and the track receptance is calculated at a position on
the rail where none of the modes has a zero deflection (this position is located at distance 2�0:5 times the span
length from the sleeper). In this case, a track with only 3 sleeper bays is used so that the FRF is composed of a
reduced number of resonances in order to achieve a clearer resolution in the frequency range up to 3 kHz. It is
observed that it is possible to fit the FEM results with only 10 rail modes.

By increasing the number of sleeper bays and considering a wider frequency range, more vibration modes
must be included in the rail model. The graph in Fig. 12 shows the number of modes required to fit the exact
FRF for different frequency ranges and number of sleeper bays. The criterion used for evaluating the accuracy
of the estimated FRF H� with respect to the exact function H in the frequency range [0, fmax] is

100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

f max

Z f max

0

ðjH�j � jHjÞ2

jHj2
df

s
o2% (18)

considering the exact function as that corresponding to a model with 120 rail vibration modes.

5. Results

In order to verify the proposed model in the time domain, a benchmark test of a moving wheelset on a track
has been performed to compare results to those obtained by a method previously presented by the
CHARMEC group in Ref. [19]. The method used as reference has been validated in Ref. [20] and it has been
compared in a benchmark test in Ref. [21].

The parameters used in the simulations were selected from Ref. [21]. Table 1 summarises the mechanical
properties of track and vehicle. The rail is considered as a Rayleigh–Timoshenko beam and the sleepers are
modelled as Euler–Bernoulli beams on a Winkler foundation. Railpads are modelled as springs and viscous
dampers in parallel and viscous dampers account for the ballast damping. A total of 51 sleeper bays are
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Table 1

Input data for vehicle and track models

Denotation Parameter Value

Track

Er Young’s modulus of rail 210GN/m2

nr Poisson’s ratio of rail 0.3

Ir Rail moment of inertia 3.05� 10�5m4

Ar Rail cross-sectional area 7.69� 10�3m2

kr Timoshenko shear coefficient 0.32

rr Rail density 7700kg/m3

Lr Rail length 32.5m

Ns Number of sleepers 51

Es Young’s modulus of sleeper 64GN/m2

ns Poisson’s ratio of sleeper 0.15

Is Sleeper moment of inertia 1.75� 10�4m4

As Sleeper cross-sectional area 5.138� 10�2m2

rs Sleeper density 3070kg/m3

Ls Sleeper length 2.36m

Ds Distance between sleepers 0.65m

Kp Railpad stiffness 150MN/m

Cp Railpad damping 50 kN s/m

Kb Ballast stiffness per rail seat 67.8MN/m2

Cb Ballast damping per rail seat 25.4 kN s/m2

Vehicle

Mc Carbody mass 44,800kg

Mb Bogie frame mass 4000kg

Ib Bogie frame pitch moment of inertia 1600kgm2

Mw Wheelset mass 1800kg

Po Wheel–rail static load 74.6 kN

Lw Distance between wheels in a single bogie 2.5m

KH Constant of Hertzian contact model 90GN/m3/2

Ks1 Primary suspension stiffness 1MN/m

Cs1 Primary suspension damping 10 kN s/m

Ks2 Secondary suspension stiffness 1.4MN/m

Cs2 Secondary suspension damping 40 kN s/m
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Fig. 13. Comparison of results from the proposed model (solid) and the model developed by CHARMEC (dashed). The calculations

correspond to dynamic responses due to a wheelflat or rail corrugation (the corrugation irregularity is shown as the dash–dotted line).
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considered to represent the track, and 90 modes are used for each rail. The selected load cases study the
dynamic responses due to a rounded wheel flat or a corrugated rail.

Results are illustrated in Fig. 13. In these figures, the wheel–rail contact force responses are illustrated for
some combinations of irregularity and train speed. Good agreement between the results from the two models
is observed.

6. Conclusions

This work presents a method for simulation of the dynamic interaction between train and track. The
method is computationally efficient in the sense that a reduced number of coordinates is sufficient. The
method proposes a modal substructuring approach of the system by modelling those elements with linear
dynamic behaviour (rails and sleepers) with modal coordinates, and by introducing interconnection elements
between these structures (wheel–rail contact, railpads and ballast) by means of their interaction forces. The
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technique offers the possibility of including complex models of inter-structural elements such as non-Hertzian
wheel–rail contact, and nonlinear properties of ballast and rail pads.

The method has been tested against a validated method developed by CHARMEC. Good agreement was
obtained for the simulated dynamics caused by a wheelflat or by rail corrugation when linear models of vehicle
and track were considered.
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[7] R.V. Dukkipatti, R. Dong, Idealized steady state interaction between railway vehicle and track, Proceedings of the Institution of

Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 213 (1) (1999) 15–29.

[8] J.C.O. Nielsen, A. Igeland, Vertical dynamic interaction between train and track—influence of wheel and track imperfections, Journal

of Sound and Vibration 187 (5) (1995) 825–839.

[9] J.C.O. Nielsen, J. Oscarsson, Simulation of dynamic train�track interaction with state-dependent track properties, Journal of Sound

and Vibration 275 (2004) 515–532.

[10] T.X. Wu, D.J. Thompson, A hybrid model for the noise generation due to railway wheel flats, Journal of Sound and Vibration 251 (1)

(2002) 115–139.

[11] C. Andersson, T. Abrahamsson, Simulation of interaction between a train in general motion and a track, Vehicle System Dynamics 38

(2002) 433–455.

[12] W. Weaver, S.P. Timoshenko, D.H. Young, Vibration Problems in Engineering, Willey, New York, 1990.

[13] S.H. Farchaly, M.G. Sheb, Exact frequency and mode shape formulae for studying vibration and stability of Timoshenko beam

system, Journal of Sound and Vibration 180 (2) (1995) 205–227.

[14] S.G. Newton, R.A. Clark, An investigation into the dynamic effects on the track of wheelflats on railway vehicles, Proceedings of the

Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 21 (4) (1979) 287–297.

[15] J.M. Tunna, Wheel/rail forces due to wheel irregularities, in: Proceedings of the Ninth International Wheelset Congress, Montreal,

Canada, 1988 (paper 6-2).

[16] K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985.

[17] D.A. Hills, D. Nowell, Mechanics of Fretting Fatigue, Kluwer Academic Publishers, Dordrecht, 1994.

[18] J.J. Kalker, Three-Dimensional Elastic Bodies in Rolling Contact, Kluwer Academic Publishers, Dordrecht, 1990.

[19] J.C.O. Nielsen, T.J.S. Abrahamsson, Coupling of physical and modal components for analysis of moving non-linear dynamic systems

on general beam structures, International Journal for Numerical Methods in Engineering 33 (1992) 1843–1859.

[20] A. Johansson, J.C.O. Nielsen, Out-of-round railway wheels—wheel–rail contact forces and track response derived from field tests and

numerical simulations, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 217 (2003)

135–146.

[21] S.L. Grassie, Benchmark test for models of railway track and of vehicle/track interaction at relatively high frequencies, Supplement to

Vehicle System Dynamics 24 (1995) 355–362.


	Railway vehicle/track interaction analysis using a modal substructuring approach
	Introduction
	Vehiclendashtrack dynamic model
	Track modelling
	Equations of motion of the track
	Vehicle model
	Vertical forces in wheelndashrail contact
	Railpads

	Solving the interaction problem
	Modal truncation
	Introduction
	Track FRF
	Model fit by FRF

	Results
	Conclusions
	Acknowledgements
	References


